
 

 
 
 

    

      
 

    
 

     
 

         
 

     
 

       

      

     
 

      
 

      
        

  

Author Statement 

Cathryn Wood: Formal analysis, Writing - Original Draft,  Visualization 

George H. Balazs: Conceptualization, Methodology, Resources, Data Curation, Writing - Review & 
Editing, Supervision 

Marc Rice: Methodology, Resources, Supervision 

Thierry M. Work: Methodology, Resources, Data Curation, Writing - Review & Editing,   Supervision 

T. Todd Jones: Resources, Data Curation, Writing - Review & Editing,   Supervision 

Eleanor Sterling: Conceptualization, Methodology, Resources, Data Curation, Writing - Review & Editing, 
Supervision, Funding acquisition 

Tammy M. Summers: Methodology, Resources, Data Curation, Writing - Review & Editing, Supervision 

John Brooker: Validation, Investigation, Data Curation, Writing - Review &   Editing 

Lauren Kurpita: Methodology, Resources, Data Curation, Supervision 

Cheryl S. King: Methodology, Resources, Data Curation, Writing - Review &   Editing 

Jennifer M. Lynch: Conceptualization, Methodology, Validation, Formal analysis, Investigation, 
Resources, Data Curation, Writing - Original Draft, Writing - Review & Editing, Visualization, Supervision, 
Project administration 



 

 



 

 
 
 
 
 

 
 
 

 

 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 

 

 
 

 
 

 
 

 

1 
2 

Sea turtles  across the North Pacific are exposed to perfluoroalkyl   substances  

Cathryn Wood1, George H. Balazs2, Marc Rice3, Thierry M. Work4, T. Todd Jones5 ,  Eleanor  

Sterling6, Tammy M. Summers7, John Brooker8, Lauren Kurpita9, Cheryl  S. King10, and Jennifer 

M.  Lynch1,11* 
 

1 Hawai‘i Pacific University, Center for Marine Debris Research, Waimānalo, HI,  USA  

2 Golden Honu Services  of Oceania, Honolulu, HI,  USA  

3 Hawai‘i Preparatory  Academy, Waimea, HI,  USA  

4 U.S. Geological Survey, National Wildlife Health Center, Honolulu Field Station,  Honolulu,  

HI,  USA  

5 NOAA Pacific Islands Fisheries Science Center, Honolulu, HI,  USA  

6 American Museum of Natural History, New York,  NY  

7 Rainbow Connection Research,  Guam,  USA  

8 College  of Charleston, Charleston, SC,  USA  

9 Hawai‘i Island Hawksbill Turtle Recovery Project, Hawai‘i National Park, HI,  USA  

10 Hawaiian Hawksbill Conservation, Kihei, HI,  USA  

11 National Institute of Standards and Technology, Chemical Sciences Division, Waimānalo,  HI,  

USA E-mail:  Jennifer.lynch@nist.gov,  *corresponding author, previously Jennifer M. Keller 

Abstract  

Perfluorinated alkyl  substances (PFASs) are global, persistent, and toxic   contaminants.  

We assessed  PFAS concentrations in green (Chelonia mydas) and hawksbill   (Eretmochelys  

imbricata) turtles from the North Pacific. Fifteen compounds were quantified via   liquid  
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chromatography tandem mass spectrometry from 62 green turtle and 6 hawksbill plasma samples 

from Hawai‘i, Palmyra Atoll, and the Northern Marianas Islands. Plasma from 14 green turtles 

severely afflicted with fibropapillomatosis, and eggs from 12 Hawaiian hawksbill nests from 7 

females were analyzed. Perfluorooctane sulfonate (PFOS) predominated in green turtle plasma; 

perfluorononanoic acid (PFNA) predominated in hawksbill tissues. Concentrations were greater 

in hawksbill than green turtle plasma (p<0.05), related to trophic differences. Green turtle plasma 

PFOS concentrations related to human populations from highest to lowest: Hawai‘i, Marianas, 

Palmyra. Influence on fibropapillomatosis was not evident. PFASs were maternally transferred 

to hawksbill eggs, with decreasing concentrations with distance from airports and with clutch 

order from one female. A risk assessment of PFOS showed concern for immunosuppression in 

Kailua green turtles and alarming concern for hawksbill developmental toxicity. 

Perfluoroundecanoic (PFUnA) and perfluorotridecanoic (PFTriA) acid levels were correlated 

with reduced emergence success (p<0.05). Studies should further examine toxicity of PFASs on 

sea turtle development. 

Capsule: 

Endangered or threatened sea turtle species at remote Pacific islands contain perfluoroalkyl 

substances in blood and offload them to eggs, at concentrations known to be detrimental in birds. 

Keywords: Perfluorinated contaminants, marine turtles, Pacific islands, reptile, maternal transfer 
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Introduction 

Perfluoroalkyl substances (PFASs) are a chemical family used in many industrial and 

commercial products (Lau et al. 2007). Their chemical makeup typically consists of a fluorinated 

carbon backbone (4 to 14 in length) and a charged functional moiety, such as a carboxylate. The 

carbon-fluorine bond is incredibly stable, which gives PFASs extreme persistence and both 

hydrophobic and lipophobic properties (Buck et al. 2011). Since their invention in the 1930s and 

commercialization in the 1950s, PFASs have been incorporated into every-day consumer 

products including coatings, fabrics, grease-proof papers, soil repellents, and aqueous film-

forming foam fire suppressants (AFFFs) (Moody and Field 2000; Buck et al. 2011; Ahrens and 

Bundschuh 2014; Interstate Technology Regulatory Council 2020). AFFFs used for firefighting 

and training at military bases and airports are large point sources of PFAS contamination 

(Schultz et al. 2004). Their nearly non-biodegradable properties, along with global (Yamashita et 

al. 2008) render PFASs highly persistent pollutants in the environment worldwide(Lau et al. 

2007) with detectable baseline concentrations in the most remote regions (Young et al. 2007). 

PFASs are prominent contaminants in wildlife and human tissues, and can result in 

toxicological effects, including immune, developmental, hepatic, and endocrine disruptions (Lau 

et al. 2007; DeWitt 2015). In 2001, 3M Corporation, a major producer of perfluorooctane 

sulfonate (PFOS), began phasing out production of this chemistry. In 2006, eight manufacturers 

committed to reduce perfluorooctanoate (PFOA) production by 2015 through a US EPA 

Stewardship program (US EPA 2018). Additional policies have focused on eliminating further 

production of PFASs in Europe and Asia, but PFASs remain prominent in the environment 

(McCarthy 2017). 
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Because sea turtles are rare and protected, understanding their exposure to toxic 

contaminants is important for the recovery of these species (NMFS and US FWS 1998b, a). 

Moreover, certain life stages of sea turtles can indicate the contaminant levels in their respective 

foraging grounds, because they integrate those contaminants over several years (O'Connell et al. 

2010; Keller 2013). The generalized long life history of green (Chelonia mydas) and hawksbill 

(Eretmochelys imbricata) sea turtles includes an ontogenetic switch that separates two juvenile 

phases (Bolten 2003). The youngest turtles forage in open ocean habitats, and transition to 

foraging in nearshore benthic habitats as older juveniles where they grow into subadults and 

adults. As adults, they migrate from foraging grounds to inter-nesting habitat where they do not 

eat much. The green turtle is the lowest trophic level sea turtle species (Bjorndal 1997). They 

transition from omnivorous pelagic juveniles (Parker et al. 2011) to herbivory in the neritic 

stages (Arthur and Balazs 2008; Summers et al. 2017). Green turtles are highly migratory, across 

entire ocean basins, but have strong site fidelity to foraging grounds within a life stage (Summers 

et al. 2017; Shimada et al. 2020). Hawksbill sea turtles are less migratory (Gaos et al. 2020b) and 

continue to feed at higher trophic levels after their ontogenetic switch to eating primarily sponges 

in the neritic phase (Bjorndal 1997; Summers et al. 2017). 

Six studies have reported PFAS concentrations in tissues of six sea turtle species (Keller 

et al. 2005; O'Connell et al. 2010; Keller et al. 2012; Guerranti et al. 2013; Guerranti et al. 2014; 

Pasanisi et al. 2016), but none from turtles across the North Pacific. Most analyzed plasma 

(Keller et al. 2005; O'Connell et al. 2010; Keller et al. 2012), and none have analyzed eggs. 

Differences in concentrations among five species provide evidence that PFASs biomagnify in the 

turtles’ distinct food webs and that the major route of exposure is diet (Keller et al. 2012). For 
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example, PFAS concentrations are greater in carnivorous loggerhead (Caretta caretta) sea turtles 

than herbivorous green turtles from the same neritic habitat (Keller et al. 2012). 

The toxicological effects of PFASs on sea turtles are still largely undetermined. 

Immunosuppressive contaminants have long been a suspected contributing influence in a 

debilitating, tumor-forming, viral disease, fibropapillomatosis (FP) (Herbst and Klein 1995; 

Keller 2013), but to date, no convincing causal relationship between exposure to toxicants and 

development of FP has been made. For instance, when levels of other types of persistent organic 

pollutants (POPs) were measured in the plasma of many of the same turtles in the current study, 

the levels did not relate to severity of FP in Hawaiian green turtles. PFASs were not included in 

that analysis (Keller et al. 2014a). Furthermore, maternal offloading of POPs occurs during yolk 

deposition (Keller 2013; Munoz and Vermeiren 2020), but transfer of PFASs to eggs and effects 

on hatching success and embryonic development are unknown. 

In this study, we measured concentrations of 15 PFASs in the plasma of neritic-phase 

green and hawksbill sea turtles across three North Pacific regions: the Main Hawaiian Islands 

(MHI), the Commonwealth of the Northern Marianas Islands (CNMI), and Palmyra Atoll. Eggs 

from excavated hawksbill nests from MHI were also analyzed We hypothesized that (1) PFOS 

will predominate like in most other studies, (2) higher trophic positioned, spongivorous 

hawksbills will have greater plasma PFAS concentrations than herbivorous green turtles, (3) 

PFAS concentrations in turtles will correlate to human population or proximity to military bases 

or airports (and in the lack of local point sources, remote Palmyra Atoll will represent globally 

diffuse contamination levels transported by air and ocean currents), (4) PFASs will be detected 

in the sampled hawksbill eggs, revealing maternal offloading, (5) PFAS concentrations in eggs 
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will negatively correlate to nest success variables, and (6) eggs from successive clutches from 

the same female within a nesting season will have stable PFAS concentrations. 

2. Materials and Methods 

2.1 Study Sites 

Samples were collected on beaches and coastal waters from three Pacific Island regions: 

the Main Hawaiian Islands (MHI), the Commonwealth of the Northern Marianas Islands 

(CNMI), and Palmyra Atoll (Figure 1). The MHIs have roughly 1.4 million people, three 

international airports, and 11 military bases (US Census Bureau 2019a). CNMI has about 57,000 

people (United Nations Dept. of Economic and Social Affairs 2019), three international airports, 

and no active military bases, but a historically large military presence from World War II. 

Palmyra Atoll is a remote U.S. National Wildlife Refuge with less than 20 staff, no commercial 

airport, and a decommissioned military base. 

2.2 Sample Collection 

Cryogenically archived sea turtle samples were selected from the NIST Biorepository’s 

Biological and Environmental Monitoring and Archival of Sea Turtle tissues project (BEMAST). 

Sample collection and processing methods are detailed in Keller et al. (2014b). Sample metadata 

are provided (Tables S1, S2). Plasma samples were selected to investigate spatial, species, and 

health status differences and included 62 samples from 61 free-ranging green sea turtles from 

across three study sites (Table 1, Figure 1): 39 from MHI (n=13 from three sites), 12 from CNMI 

(n=6 from Saipan and Tinian), and 10 from Palmyra Atoll (n=2 from each segment of the refuge, 

with one turtle sampled twice over two years). Plasma from 14 severely tumored, MHI-stranded 

turtles were also analyzed. All MHI plasma samples came from the same turtles that were 
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analyzed previously for other POPs (Keller et al. 2014a), representing four groups of green 

turtles with varying prevalence of FP: Kiholo Bay (0% FP), Kailua Bay (low to moderate FP 0% 

to 5%), Kapoho Bay (higher FP 35%) and tumored-stranded (100% FP). All six hawksbill 

plasma samples available in the BEMAST inventory from CNMI (n=4, two each from Saipan 

and Tinian) and Palmyra (n=2) were included. All 12 hawksbill nests available in BEMAST 

inventory at the time were included. They were from beaches on Maui, Hawai‘i, and Kauai 

(Figure 1) in 2012 and represent seven nesting females (Table S2). Unhatched eggs were 

collected from each nest upon excavation after hatchling emergence. Egg contents from at most 

three unhatched eggs per nest were pooled, homogenized, aliquoted, and cryogenically archived. 

The number of eggs laid, days of incubation, hatching success, and emergence success were 

calculated per nest according to Miller (1997) to inspect the fitness of each nest in relation to 

PFAS concentrations. The percent of eggs laid that developed to at least stage 23 of 

development, as defined by Miller et al. (2017) was also calculated (Table S2). 

2.3 PFAS Measurements 

Detailed methods are provided in Supplemental Information. Samples were measured 

using methods modified from Keller et al. (2012). Concentrations of 15 PFASs were quantified 

using the internal standard approach (Table S3). Field blanks were prepared with the same lot 

number of blood collection supplies (Table S4). Samples were extracted via sonication with 

acetonitrile and purified on 250 mg Envi-carb columns (Supelco, Bellefonte, Pennsylvania). 

Methanol extracts (20 μL) were injected on an Agilent Zorbax Eclipse Plus C18 column using a 

liquid chromatograph (Agilent 1100 HPLC, Palo Alto, CA) negative electrospray ionization 

tandem mass spectrometer (API 4000, Applied Biosystems-MDS Sciex, Foster City, CA). The 

mobile phase consisted of methanol and 20 mmol/L ammonium acetate in water. Two transitions 
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for PFOS were monitoring (499 → 99 and 499 → 80) to ensure bile acids did not interfere. 

Concentrations are totals of linear and branched isomers. Reporting limits (RLs) were 

determined according to O'Connell et al. (2010). The mass fractions of PFASs measured in NIST 

SRM 1957 Organic Contaminants in Non-Fortified Human Serum and SRM 1947 Lake 

Michigan Fish Tissue were within the uncertainty of the reference values (Table S5). 

2.4 Data Analyses 

R software package, NADA, was used whenever possible when samples were <RL as 

suggested by Helsel (2005), otherwise JMP (SAS Institute Inc. Cary, NC) was used with values 

<RL substituted with half the RL. Significance was determined as p<0.05. Data was assessed for 

assumptions of normality and equal variances. Non-parametric ANOVAs in NADA tested 

differences among sites for green turtle plasma PFAS concentrations, followed by Steel Dwass 

non-parametric multiple comparison tests using JMP. Wilcoxon t-tests in JMP compared 

hawksbill plasma PFAS concentrations between Palmyra and CNMI, except PFUnA required 

NADA’s Wilcoxon t-test. Non-parametric ANOVAs in NADA tested differences among sites 

and FP incidence (grouped as in Keller et al. (2014a)) for green turtle plasma PFOS 

concentrations, followed by Steel Dwass non-parametric multiple comparison tests using JMP. 

Species differences were assessed with CNMI data. 

Amount of PFASs offloaded into each nest was estimated by multiplying the total 

number of eggs laid by the average grams of each pooled egg contents from that nest, and by the 

measured PFAS concentration (ng/g). The nanograms of PFASs offloaded were then compared 

across clutches from one nesting season of a mother using linear regressions. PFAS 

concentrations in the eggs were compared to nest success variables using Kendall’s tau 

correlations in NADA. 
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To assess toxicological risk, estimated margins of safety (EMOS) were calculated as 

described in Keller et al. (2012), as the ratio of the average plasma, serum, or egg PFOS 

concentration in laboratory-exposed animals in the lowest observed adverse effect level 

(LOAEL) dose group to either the average or maximum sea turtle plasma or egg PFOS 

concentration. EMOS below 100 were considered of concern (Faustman and Omenn 1996). 

3. Results and Discussion 

3.1 Plasma PFAS Concentrations 

PFAS mass fractions (hereafter called concentrations) in ng/g wet mass for each turtle 

plasma sample are provided (Table S6). Summary statistics for all possible groupings of Pacific 

turtles are compared to turtles along the Eastern U.S. (Table S7). 

3.1.1 Green Turtle Plasma PFAS Concentrations 

PFOS comprised >96% of the ∑PFAS concentrations in green turtle plasma regardless of 

capture location (Table 1; Figures 2 and S1), similar to previous reports for green, leatherback, 

loggerhead, and Kemp’s ridley turtles from the Eastern U.S. (O'Connell et al. 2010; Keller et al. 

2012). PFOS concentrations in green turtle plasma were significantly different among the Pacific 

Island regions and increased with human population (Figure 3a). This trend continues when 

including previously published PFOS concentrations in green turtles from Core Sound, North 

Carolina (mean=2.41 ng/g; (Keller et al. 2012) Figure 3a), a watershed with ≈6,390,000 people 

(O'Connell et al. 2010). The MHI with 1,400,000 people had the next highest mean PFOS 

concentration at 1.14 ng/g and significantly greater than CNMI (57,000 people) at 0.524 ng/g 

and Palmyra (20 people) at 0.155 ng/g. This relationship between PFAS plasma concentration 

and human population corroborates previous relationships for sea turtle contaminant exposure 

https://mean=2.41
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(O'Connell et al. 2010; Alava et al. 2011), is expected for these man-made chemicals, and 

suggests that local or regional sources add to the diffuse, globally distributed PFAS levels in 

nearshore marine organisms. 

Green turtles from the MHIs were categorized into four groups based on their capture 

location and incidence and severity of FP using the same grouping as Keller et al. (2014a). These 

were No FP (Kiholo), Low FP (Kailua), High FP (Kapoho), and FP stranded. The FP stranded 

turtles were alive, severely afflicted with FP tumors, and exceedingly emaciated because of the 

disease. Significant differences in PFOS plasma concentrations were noted among the groups 

(p=5e-9), but not in a dose-dependent manner if PFOS was contributing to FP (Figure S2). The 

low FP Kailua group (mean=2.45 ng/g), from the most urbanized area sampled, had significantly 

higher concentrations than the other three groups and was relatively similar to those in Core 

Sound, NC (2.41 ng/g) (Table 1, Table S7) (Keller et al. 2012). This is likely due to O‘ahu being 

a heavily populated island (974,563 people), and hosting numerous military bases, airports, and 

other point-sources (US Census Bureau 2019a). The Kailua sampling site is adjacent to Marine 

Corps Base Hawai‘i, with an active airstrip and firefighting training sites. Additionally, the 

Kawainui watershed empties into Kailua Bay at this sampling site and contains 19.1% urban 

development, while Kapoho and Kiholo watersheds had 7.8% and 0% urban development, 

respectively (Parham et al. 2008a, b, c). Given that the MHIs are one of the most isolated 

archipelagos in the world, approximately 4,000 km away from the nearest continent (National 

Academy of Sciences 2004), air and ocean circulation transport a baseline level of globally 

diffuse PFASs to Hawaiian waters. The differences among turtle groups here indicate that local 

sources compound global sources of PFASs in Hawai‘i. 

https://mean=2.45
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The lack of a dose-dependent relationship between PFASs and FP is similar to results for 

other POPs that were measured in these same turtles (Keller et al. 2014a) in which Kailua turtles 

with low FP incidence had higher concentrations than the other two locations. What differs 

between the two studies is the relative difference in the FP stranded turtles. For protein-

associating PFOS, the FP stranded turtles had levels that were close to average among the MHI 

turtles (Table 1). For lipophilic POPs, the FP stranded turtles had elevated levels compared to the 

other MHI turtles (Keller et al. 2014a). This can be explained by the different distribution of 

these compounds during weight loss and lipid mobilization. The lipophilic POPs flooded into the 

blood of the emaciated FP stranded group upon weight loss. With no lipid to associate within the 

thin turtles, those POPs continued to circulate in the blood at high levels. Conversely, PFOS 

preferentially associates with proteins in the blood and liver. Upon weight loss, protein 

concentrations in these tissues do not change as much as lipid levels. Thus, PFOS remains 

associated with proteins, even in emaciated animals, resulting in less mobilization of PFOS into 

the blood upon weight loss. 

Green and hawksbill turtles inhabit the coral reefs of CNMI (Summers et al. 2017), a 

U.S. Commonwealth comprised of 14 islands. They face several threats, including illegal harvest 

and marine debris entanglement (Summers et al. 2018). Sampling sites were on the archipelago’s 

two most populated islands, Saipan with 48,200 residents and Tinian with 3,056 residents 

(Department of Commerce Central Statistics Division 2017). Green turtles from Saipan had 

significantly greater plasma PFOS and ƩPFAS concentrations than from Tinian (p=0.02); (Table 

1), corroborating other human population trends. 

Palmyra Atoll is extremely remote in the Central Pacific at 5.9° N 162.1° W, with a 

history of extensive human disturbance during World War II in the 1940s when construction of a 
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U.S. naval base necessitated the remodeling of the small islets (Collen et al. 2009). Construction 

of >100 buildings and two airstrips occurred between 1940 and 1944. Dredging in the West 

Lagoon, as well as causeway construction across multiple reef flats, roughly doubled the land 

area and resulted in major hydrodynamic changes in the lagoon (Collen et al. 2009). By 1945, 

most military activity had ceased and personnel were evacuated, which prompted many natural 

changes in the atoll’s topography (Collen et al. 2009). Since 2001, the atoll has been protected as 

a U.S. Fish and Wildlife Refuge. 

No uses or disposal of PFASs are known on Palmyra Atoll. AFFFs were invented 15 

years after the U.S. Navy abandoned the atoll (Moody and Field 2000). A cursory spatial 

comparison using green turtle plasma PFAS concentrations showed no evidence of a significant 

point source on the atoll (see Supplemental Information). The comparison was confounded by 

life stage with the greatest PFAS burden in a young green turtle that recently recruited from the 

pelagic carnivorous stage into the nearshore herbivorous stage. New recruits favor the eastern 

region of Palmyra (Sterling et al. 2013), and may carry a greater PFAS burden to Palmyra, which 

dilutes with growth thereafter (Keller 2013). The current study suggests that remote Palmyra 

Atoll is a control reference site with little to no local point sources of PFASs, reflecting baseline 

globally diffuse concentrations. The first study to measure chemical contaminants in Palmyra sea 

turtles found elevated aluminum and iron McFadden et al. (2014). 

3.1.2 Hawksbill Plasma PFAS Concentrations 

Perfluorononanoic acid (PFNA) predominated in hawksbill plasma from CNMI (n=4) 

and Palmyra (n=2), with means of 1.08 ng/g and 3.40 ng/g, respectively (Figures 2 and 3b). The 

same PFAS profile was seen in hawksbills from Juno Beach, FL (a typo in in Keller et al. (2012) 

should read 17.3 ng/g for mean PFNA). It is interesting that hawksbill turtles from such distant 
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regions have similar PFAS profiles (PFNA predominating), while green turtles from these 

disparate regions show PFOS dominating. The reasons for the species differences in PFAS 

profiles are difficult to explain, especially since marine mammals stranded in Hawai‘i show still 

another profile (perfluoroundecanoic acid (PFUnA) dominated (Kurtz et al. 2019)). Differences 

may be explained by elimination mechanisms, prey selection, or migratory pathways. 

CNMI and Palmyra hawksbill plasma had lesser PFAS concentrations than Juno Beach 

hawksbills, in line with the drastic differences in human population (Figure 3b). This finding is 

congruent with the green turtle spatial differences described above and those in loggerhead 

turtles from the U.S. East coast (O'Connell et al. 2010). Together these findings support the idea 

that PFAS levels, biomagnifying in marine organisms inhabiting developed nearshore regions, 

are influenced more from local or regional land-based sources than diffuse sources from global 

air and ocean currents. Juno Beach, FL, is within the St. Lucie-Loxahatchee Watershed which 

has 6,400,000 human residents (South Florida Water Management District 2009; US Census 

Bureau 2019b, c). Surprisingly, Palmyra hawksbills (only 20 human residents) had a greater 

mean concentration of PFNA, PFUnA, and ∑PFASs than those in CNMI, but low sample size 

prevented statistical analyses. The reasons for the observed spatial differences could include prey 

selection, migratory pathways, or sources of contamination. 

3.1.3 Species Comparisons of Plasma PFAS Concentrations 

The two hawksbill turtles from Palmyra were both captured in the eastern region of the 

atoll, and had PFAS concentrations one order of magnitude greater than the Palmyra green turtle 

mean (Tables 1 and S6). In CNMI, ∑PFAS concentrations in hawksbill plasma was significantly 

greater than green turtles (Figure S3). These results corroborate previous results showing Eastern 

U.S. hawksbills had greater plasma PFOS levels than three other species, including green turtles 
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(Keller et al. 2012). Similarly, in Australia and Japan, hawksbills had greater concentrations of 

POPs (PFASs were not tested) than green turtles (Hermanussen et al. 2008; Malarvannan et al. 

2011). The trophic position of the two species may explain greater biomagnification of PFASs in 

hawksbills. Omnivorous hawksbills primarily prey on sponges, but also forage on other 

invertebrates and marine vegetation, placing them higher on the food web than the herbivorous 

stage of green turtles studied (Bjorndal 1997). 

3.2 Egg PFAS Concentrations 

Eleven PFAS compounds were detected in at least one hawksbill nest (Tables 1 and S2). 

Other POPs are known to be deposited into eggs from mother sea turtles during egg production, 

rather than crossing the eggshell in the nest environment (Keller 2013; Munoz and Vermeiren 

2020). Therefore, POP concentrations in eggs represent the mother’s exposure from her foraging 

grounds (Alava et al. 2011). It is expected that PFASs deposit into eggs in a similar fashion as 

maternal offloading has been documented in other egg-laying species (Wilson et al. 2020). The 

presence of PFASs in hawksbill eggs reveals, for the first time, offloading from females to their 

eggs and, to our knowledge, is the first report of PFAS offloading in any reptile species. These 

data fill an important gap in understanding exposure of adult female hawksbills and their 

developing embryos to PFASs. 

∑PFAS concentrations were greatest in the nest laid in Wailua, Kauai, and lowest in the 

four nests from three mothers in Pohue, Hawai‘i (Figure S4). Nest PFAS concentrations were 

negatively, significantly (p=0.030) correlated with the distance over water from the nests to the 

nearest international airport (Figure S4). This preliminary finding may be explained by airports 

and military bases being some of the largest point sources of PFASs due to firefighting training 
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(Schultz et al. 2004; Houtz et al. 2016). The relationship was driven by the Wailua nest, and a 

larger sample size should be analyzed with future satellite tracks of females. 

PFAS profiles in eggs when averaged across the seven mothers were dominated by PFOS 

(28.5% of ∑PFASs), PFUnA (24.7%), and PFNA (23.8%) (Figures 2 and S1). More 

interestingly, the eggs from different mothers displayed drastic differences in PFAS profiles 

(Table S2, Figure S5). The nest laid in Wailua, Kauai, had the highest predominance of PFOS 

(88%) and PFTA (3.5%) and the lowest PFNA contribution (0.9%), a profile that reflects older, 

phased-out formulations of AFFFs (Place and Field 2012). The four nests laid by three females 

in Pohue, Hawai‘i had an intermediate profile with PFUnA dominating, followed by either PFOS 

(16% to 31%) or PFDA. The five nests laid by one female (ID 19591-04) on Maui were shifted 

towards PFNA > PFOS (22.6%) > PFUnA > PFDA. Finally, the two nests from likely different 

females on Apua and Kamehame beaches on Hawai‘i had a profile most different from the Kauai 

nest, dominated by PFNA > PFUnA > PFDA, with PFOS comprising only 6%. The extreme 

spectrum of PFOS contributions, from 88.3% in Kauai to 6% in Hawai‘i, suggests that adult 

female Hawaiian hawksbill turtles forage in distinct areas that have different exposure profiles. 

This suggestion is partially explained by understanding that POP concentrations in sea turtle 

eggs originate from the mother’s diet from her foraging grounds (Alava et al. 2011; Keller 2013). 

Therefore, the interpretation of the extreme spectrum of PFOS contribution must be placed in 

context of hawksbill migration and foraging selection, as described next. 

Though hawksbill turtles are capable of long-distance migrations (>2,000 km) (Vaughan 

and Spring 1980), both foraging juveniles and nesting adults exhibit natal philopatry with 

relatively small foraging ranges (Gaos et al. 2017; Wood et al. 2017; Gaos et al. 2018; Gaos et al. 

2020b). Hawaiian hawksbills have recently been recognized as a genetically distinct 
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management unit, with little connectivity to other populations (Gaos et al. 2020a). Satellite tracks 

of nine Hawaiian hawksbills show that their nesting and foraging grounds are close, on the same 

or neighboring island (Parker et al. 2009). One Maui nester (ID 19591-04) migrated to O‘ahu to 

forage in 2004 (Parker et al. 2009). Four years later, she nested again in the same region on Maui 

and her post-nesting track (King et al. unpublished data) showed the same path to the same 

O‘ahu foraging site (Figure S6). Four more years later, she laid five nests on Maui that were 

sampled in the current study. This strong site fidelity to foraging grounds, relatively near the 

nesting beaches, with potentially different local point sources across the Main Hawaiian Islands 

may explain the extreme differences in PFAS profiles observed between the nests laid farthest 

from each other: Kauai vs. Kamehame. Future studies could test this theory by measuring PFAS 

concentrations and profiles in marine environmental samples, such as sediment or prey in known 

hawksbill foraging grounds. 

Of the 12 nests sampled in 2012, five were laid during the same nesting season (22 days 

to 25 days apart) by Turtle 19591-04 in Makena, Maui. Two other nests were laid by another 

female (ID 112) 43 days apart at Pohue, Hawai‘i; it is likely this turtle laid at least one more nest 

between these dates but it was not sampled. Two additional Hawai‘i Island nests came from 

turtles with unique IDs, and three nests were laid by unknown females (Table S2). The amounts 

of PFASs in nests of Turtle 19591-04 significantly declined with clutch order (Figure 4), 

indicating maternally offloaded contaminant concentrations may be a function of time within a 

nesting season. However, a decline in transferred PFAS amounts was not apparent in the two 

nests from Turtle 112. 

When sea turtles arrive at their nesting site, they are equipped with all lipid-rich follicles 

ready to become the yolk of all eggs to be laid that nesting season (Miller 1997). The follicles for 
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a single nest transit the oviduct where they are fertilized and surrounded by protein-rich albumen 

(Miller 1997). After laying this clutch, hawksbills prepare the next clutch which is laid 14 to 25 

days later. Because PFASs associate with serum albumin and fatty acid binding proteins (Ahrens 

and Bundschuh 2014) rather than lipids, they should deposit more in egg albumen than follicles. 

Since the albumen is deposited just before each nest is laid, and because in general mother turtles 

fast during nesting (Miller 1997; Hays et al. 2002; Guirlet et al. 2008; Guirlet et al. 2010), the 

mother’s body could have less PFASs to transfer through albumen into successive clutches. 

Theoretically, females would offload a greater portion of her body burden of PFASs into the first 

clutch. Turtle 19591-04 offloaded a total of 367 µg of PFASs into these five clutches in one year, 

with approximately 25% of that into the first clutch and 12% in the fifth clutch (Table S8). 

Previously, a decrease in ΣPCBs, ΣHCHs and ΣDDTs yolk concentrations from successive 

leatherback clutches suggested that reproductive lipid investment into eggs decreases as the 

maternal lipid stores decrease (Guirlet et al. 2010). The current findings suggest that PFASs are 

offloaded through albumen, and that Turtle 19591-04 was fasting during this nesting season 

while Turtle ID 112 may have been foraging. These interpretations are supported by changes in 

chicken egg PFAS concentrations during and after exposure of hens to PFASs in drinking water 

(Wilson et al. 2020). 

Nest success variables were examined for relationships with PFAS concentrations (n=11 

nests). Only two significant correlations were observed (p<0.05). Emergence success was 

negatively correlated with concentrations of two contaminants: PFUnA and perfluorotridecanoic 

acid (PFTriA) (Figure 5). Few studies exist on developmental effects of PFASs, and no 

toxicology studies are available for reptiles. In chickens, hatching success was significantly 

reduced to 61.4 % by a 100 ng/g injection of PFOS into eggs compared to 85.7 % in controls 
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(Molina et al. 2006). In tree swallow (Tachycineta bicolor) nests, hatching success was 

significantly, negatively correlated with PFOS concentrations, and complete nest failure was 

observed in three nests with concentrations at or above 150 ng/g (Custer et al. 2012). While we 

saw no negative correlation between egg burdens of PFOS and hatching success, PFASs may 

have more insidious reproductive effects for hawksbill turtles. These novel results indicate a 

potential consequence of PFAS maternal offloading to embryonic sea turtles, and are supported 

by our risk assessment. Future studies should address the developmental effects of PFASs in 

turtles. It is possible that the correlations in this study between emergence success and PFASs are 

confounded by the decline in PFASs in successive clutches, but to the authors’ knowledge, no 

studies have examined whether emergence success increases in successive clutches of sea turtles. 

3.3 Risk Assessment 

Using surrogate species is the only available option for sea turtle toxicology risk 

assessments, but because reptiles can be more sensitive than other taxa (Weir et al. 2010) a wider 

margin of safety (<100) should be used. Keller et al. (2012) estimated margins of safety for 

toxicological effects of PFOS based on plasma concentrations in five species of sea turtles along 

the Eastern U.S. All five species had margins of safety <100, which indicate a risk of at least 

immunosuppressive effects. Using the same method for PFOS plasma concentrations, average 

green turtles from Kailua Bay and the maximum green and hawksbill turtles from CNMI were at 

risk of immunosuppression (Table 2). Likewise for eggs, the average hawksbill nest had a 

margin of safety of only six, indicating heightened risk of reduced hatching success (Table 2). 

More concerningly, the maximum nest from Kauai was nearly equal to the PFOS concentrations 

(no margin of safety) that cause reduced hatching success in chickens and  tree swallows (Molina 

et al. 2006; Custer et al. 2012). This represents the first PFAS risk assessment for embryonic 



 

 
 
 
 
 

     
 

    
 

   
 

    
 

    
 

      
 

   
 

   
 

    
 

    
 

    
 

     
 

   
 

    
 

     
 

   
 

    
 

     
 

     
 

     
 

   
 

     
 

   

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

stage sea turtles and suggests that sea turtles inhabiting regions close to military bases and 

airports, even on remote islands, could be at risk of PFAS toxicity. 

4. Conclusion 

Reptiles are significantly under-studied in toxicology, particularly for PFASs (Reiner and 

Place 2015). This is the first report of plasma PFAS concentrations in Pacific sea turtles, plus the 

first to document maternal offloading of PFASs into eggs of any sea turtle species. The results 

reveal contamination patterns similar to those documented along the Eastern U.S., with PFOS 

predominating in green turtles, hawksbills accumulating greater levels than green turtles, and 

PFAS concentrations being related to human population and specific land uses. The PFAS 

concentrations in Pacific turtles are generally less than those along the Eastern U.S., which can 

be attributed to the remoteness and smaller human populations of the islands studied. Across the 

study sites, islands with greater population densities and closer proximity to military bases and 

airports rendered greater PFAS concentrations in turtles. Incidence and severity of FP did not 

relate to PFAS concentrations, so the search continues for environmental stressors that may 

contribute to this viral disease. No prior study has analyzed sea turtle tissues concurrently with 

prey items for PFAS levels; future studies on this would improve our understanding of trophic 

transfer. The PFAS egg concentrations are novel for reptilian species and show maternal 

offloading is strongest in the first clutch of a season and egg concentrations were highest in nests 

laid nearest international airports. Two contaminants (PFUnA and PFTriA) were related to 

reduced emergence success of hatchlings, which aligns with the risk assessment showing 

hawksbill egg PFOS concentrations are concerningly near concentrations causing developmental 

toxicity in birds. Future studies should address the toxicological impacts that PFASs may have 

on sea turtle development. 
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695 Table 1. Samples sizes and mass fractions (ng/g wet mass) of predominant   perfluoroalkyl  

substances  (PFASs) in plasma of North Pacific green and hawksbill   sea  turtles.  696 

697 

698 

699 Abbreviations:  Commonwealth of the Northern Marianas Islands (CNMI), Main  Hawaiian  

Islands (MHI), North Carolina (NC), Florida (FL), % >R = percent of  samples  

above the reporting  limit.  

*Eleven nests from seven mothers were analyzed.  Multiple nests  from the same  mom  were  

averaged before the summary statistics shown here were calculated for all seven   moms.  

NC and FL data taken from Keller et al. (2012). 
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706 Table 2. Estimated margins of safety (EMOS) for average/maximum sea turtle exposure   to  

perfluorooctane sulfonate based on the lowest adverse effect levels in  lab-exposed  animals.  707 

708 

709 

710 
711 * concern of risk when EMOS <100, ** heightened concern of risk when   EMOS  <10.  
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n = 39 green 
n = 12 hawksbill nests 

n = 12 green 
n = 6 hawksbill 

n = 10 green 
n = 2 hawksbill 

713 Figure 1. Green and hawksbill sea turtle sampling sites and sample sizes. Dots show capture   sites  

of free-ranging green (green) and hawksbill (purple) turtles and nest excavation sites   of  

hawksbill nests (yellow).  Fourteen stranded green turtles from MHI severely afflicted with  FP  

plasma are not  mapped.  
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717 

718 Figure 2. PFAS profiles detected in Pacific Island sea turtles. MHI = Main Hawaiian  Islands,  

CNMI = Commonwealth of the Northern Marianas Islands.  *All green turtles from MHI,   CNMI  

and Palmyra  were combined excluding the MHI FP-stranded green turtles.  Perfluoroalkyl  

sulfonates (blue shades) are visually di stinguished from perfluoroalkyl carboxylates   (other  

colors).  
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723 
724 Figure 3. Mean (one standard deviation) PFAS concentrations (ng/g) in (a) green sea turtle   and  

(b) hawksbill sea turtle plasma (bars) in relation to human population (dots). Commonwealth  of  

the Northern Marianas Islands (CNMI), Main Hawaiian Islands  (MHI), North Carolina   (NC),  

Florida (FL). Sample sizes were 10, 12, 39, and 10 green turtles, and 2, 4, and 5  hawksbills,  

respectively. NC and FL PFOS  data are from Keller et al. (2012).  Population data are  from  
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729 O'Connell et  al. (2010) for NC, and summed for counties in the St.  Lucie-Loxahatchee  

Watershed (US Census  Bureau 2019b, c) for FL. Stranded green turtles with  severe  

fibropapillomatosis  were excluded from the MHI data. The asterisk indicates a difference   in  

PFOS concentration from other Pacific sites  p<0.05).  
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733 

734 Figure 4. PFAS quantities (ng) estimated in the entire clutch of eggs from five clutches laid  by  

hawksbill turtle 19591-04 on Maui. Linear regression statistics for ng vs. clutch order are   shown  

for each  compound.  
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Figure 5. Significant correlations between perfluoroundecanoate (PFUnA) (A) and 

perfluorotridecanoate (PFTriA) (B) concentrations (ng/g) in eggs from 11 hawksbill sea turtle 

nests from the Main Hawaiian Islands and emergence success. 



 

  

 

 
         
 
 

 

 
 

 

 
 

 

 
 

 

 
 

 

 
 

 

 
 

 

 
 

 

 
 

 

 
 
 

 
 

 

 
 

 

 
 

 

 
 

 

 
 
 

 
 

 

 
 

 

 
 

 

 
 

 

 
 
 

 
 

 
 
 

 
 

 
 
 

 

 
 

 
 

 
 

 
 

 
 

  
 

 
 
 

 

 
 
 

 

 
 
 

 

 
 
 

 

 
 

 
  

 
 
 

 

 
 
 

 

 
 
 

 

 
 
 

 

 
 

 
 

 
 
 

 

    
 

 
 

 
 
 

 
 

 
 

 
 

 

 
 

 

 
 
 

 
  
 

 
 

 

 
 

 

 
 

 

 
 

 

 
    

 

 
 

 

 
 

 

 
 

 

 
 

 

 
 

 

 
 

 

    
 

 

 
 

 
 

 
 

 
 

 

 
 

 

 
 
 

 
  
 

 
 

 

 
 

 

 
 

 

 
 

 

 
 

  

 
 

 

 
 

 

 
 

 

 
 

 

 
 

 

 
 

 

    
 

 

 
 

 
 

 
 

 
 

 
 

 

 
 
 

 
  
 

 
 

 

 
 

 

 
 

 

 
 

 

 
 

  

 
 

 

 
 

 

 
 

 

 
 

 

 
 

 

 
 

 

    
 

 

 
 

 
 

 
 

 
 

 

 
 

 

 
 
 

 
  
 

 
 

 

 
 

 

 
 

 

 
 

 

 
 

  

 
 

 

 
 

 

 
 

 

 
 

 

 
 

 

 
 

 

    
 

 

 
 

 
 

 
 

 
 

 

 
 

 

 
 

 

  
 

 

 
 

 

 
 

 

 
 

 

 
 

  

 
 

 

 
 

 

 
 

 

 
 

 

 
 

 

 
 

 

    
 

 

 
 

 
 

 
 

 
 

 

 
 

 

 
 

 

 
  
 

 
 

 

 
 

 

 
 

 

 
 

 

 
 

  

 
 

 

 
 

 

 
 

 

 
 

 

 
 

 

 
 

 

    
 

 

 
 

 
 

 
 

 
 

 

 
 

 

 
 

 

 
  
 

 
 

 

 
 

 

 
 

 

 
 

 

 
    

 

 
 

 

 
 

 

 
 

 

 
 

 

 
 

 

 
 

 

    
 

 

 
 

 
 

 
 

 
 

 

 

 

 
 
 

 
  
 

 
 

 

 
 

 

 
 

 

 
 

 

 
    

 

 
 

 

 
 

 

 
 

 

 
 

 

 
 

 

 
 

 

    
 

 

 
 

 
 

 
 

 
 

 
 

 
 

   
 

 
 

 
 

 
 

 
 

  
 

 
 

 
 

 
 

 
 

 
 

 
    

 
 

 

Table 1. Samples sizes and mass fractions (ng/g wet mass) of predominant perfluoroalkyl substances (PFASs) in plasma of North Pacific green and 

hawksbill sea turtles. 

TOTAL PFASs PFOS PFNA 

Species Tissue Grouping Year 

SCL 
range 
(cm) n Median Mean SD 

Min-
Max %>RL Median Mean SD 

Min-
Max %>RL Median Mean SD 

Min-
Max %>RL 

Green 
turtle Plasma 

MHI Live 
captured, 
no FP 
stranded 

2011-
2012 

35.5 -
83.4 39 0.447 1.14 1.29 

<0.063 
- 4.52 92.3 0.447 1.14 1.29 

<0.063-
4.52 92.3 

<0.188 
-

<1.18 0 

Green 
turtle Plasma 

Kiholo 
(live 
captured) 

2011-
2012 

43.7 -
65.1 13 0.126 0.183 0.121 

<0.063 
-

0.560 76.9 0.126 0.183 0.121 
<0.063-
0.560 76.9 

<0.188 
-

<1.03 0 

Green 
turtle Plasma 

Kapoho 
(live 
captured) 

2011-
2012 

39.2 -
83.4 13 0.407 0.796 0.734 

0.196 
- 2.19 100 0.407 0.796 0.734 

0.196-
2.19 100 

<0.239 
-

<0.893 0 

Green 
turtle Plasma 

Kailua 
(live 
captured) 

2011-
2012 

42.9 -
80.3 13 2.11 2.45 1.32 

0.865 
- 4.52 100 2.11 2.45 1.32 

0.865-
4.52 100 

<0.233 
-

<1.18 0 

Green 
turtle Plasma 

MHI FP 
stranded 

2011-
2012 

35.5 -
70.2 14 0.242 0.902 1.04 

<0.054 
- 2.77 85.7 0.242 0.816 0.912 

<0.054-
2.52 85.7 

<0.162 
-

<1.21 0 

Green 
turtle Plasma CNMI 2013 12 1.74 0.562 1.12 

0.141 
- 4.11 100 0.634 0.524 0.987 

0.141-
3.65 100 

<0.301 
-

<0.377 0 

Green 
turtle Plasma Saipan 2013 

46.3 -
85.6 6 0.295 0.926 1.56 

0.175 
- 4.11 100 0.295 0.850 1.37 

0.175-
3.65 100 

<0.326 
-

<0.377 0 

Green 
turtle Plasma Tinian 2013 

47.7 -
63.7 6 0.204 0.199 0.045 

0.141 
-

0.270 100 0.204 0.199 0.045 
0.141-
0.27 100 

<0.301 
-

<0.369 0 

Green 
turtle Plasma 

Palmyra 
Atoll 

2012-
2013 

44.3 -
87.6 10 0.155 0.171 0.051 

<0.085 
-

0.265 80.0 0.155 0.171 0.051 
<0.085-
0.265 80.0 

<0.273 
-

<8.70 0 
Green 
turtle Plasma 

Core 
Sound, 2006 25 - 70 10 2.92 3.39 1.74 

0.871 
- 6.09 100 1.12 2.41 2.37 

0.871 -
3.87 100 

<0.070 
- 10 



 
 

    
 
 

                  

 
 

 
 

 
 

 
  
 

 
 

 
 

 
 

 
 

  
 

 
 

 
 

 
 
 

 
 

 
 

 
 

 
 

 
 

 
 

  
 

 
 

 

 
 

 

 
 

 

 
 

 

 
  
 

 
 

 

  
 

 

 
 

 

 
    

 

 
 

 

  
 

 

 
 

 

 
 
 

 
 

 

  
 

 

 
 

 

 
  
 

 
 

 
 
 
 

 

 
 
 
 

 

 
 
 

 
 

 
 
 
 

 

 
 
 
 

   

 
 
 
 

 

 
 
 
 

 

 
 
 
 

 

 
 
 
 

 

 
 
 

  
 

 
 
 
 

 

 
 
 
 

 

 
 
 
 

 

 
 
 
 

 

 
 
 

  
 

 
 
 
 

 

 
 
 
 

 

 
 
 
 

 

 
 
 
 

 

 
 
 

  
 

 
 
 
 

 

  
 

 
 

 
 

 
 

 
 

 
 

 
 

 
  
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
  

 
 

 

 
 

 

 

  

 

 

NC, USA 0.182 
(Keller et 
al., 2012) 

Hawksbill 
turtle Plasma CNMI 2013 

35.1 -
48.3 4 1.74 1.99 0.951 

1.19 -
3.29 100 0.634 0.654 0.285 

0.334-
1.01 100 0.972 1.08 0.516 

0.582 
- 1.79 100 

3.373 
Hawksbill 54.4 - - 0.253- 2.90 -
turtle Plasma Palmyra 2013 55.5 2 4.18 N/A 4.978 100 0.300 N/A 0.348 100 3.40 N/A 3.90 100 

Juno 
Beach, 
FL, USA 

Hawksbill 
turtle Plasma 

(Keller et 
al., 2012) 2006 25 - 70 5 33.5 44.1 23.5 

24.8 -
79.0 100 11.9 11.9 6.27 

5.45 -
21.2 100 17.0 17.3 1.21 

3.87 -
30.8 100 

Hawksbill 
turtle 

Egg 
contents MHI 2012 unknown 7* 31.0 35.0 34.1 

5.46 -
106 100 2.92 16.3 34.2 

0.862 -
93.8 100 1.28 7.44 8.90 

0.756 
- 22.8 100 

Abbreviations:  Commonwealth of the Northern Marianas Islands (CNMI), Main Hawaiian Islands (MHI), North Carolina (NC), Florida (FL), %  >R 

= percent of samples 

above the reporting limit. 

*Eleven nests from seven mothers were analyzed. Multiple nests from the same mom were averaged before the summary statistics shown here were 

calculated for all seven moms. 

NC and FL data taken from Keller et al. (2012). 



 

 

 

   
 

 

  
 

  

 
 
 

 
 

 

 
 
 

 
 

 

 
 

 
   

 
 

 
 

 
 

 
 

 
 

 
 

 
          
          
   

 
   

 
 

  
 

 
 

   
 

 
 

 
 

 
 

 
 

 
 

     
 

 
 

 
 

 

 
 

 

 
 

  

 
 

  

 
 

  

 
 

 

 
 

 

 

 
 

 
  

 
  

 
  

 
  

 
  

 
 

 

 
 

 
 

  
 

 
  

 
  

 
  

 
  

 
 

 

 
 

 
  

 
  

 
 

 
 

 
 

 
 

 

 
 

 
 

 
 

 
  

 
  

 
  

 
  

 
 

 

 
 

 
 

 
 

 
  

 
  

 
  

 
  

 
 

 

 
 

 
 

 
 

 
  

 
  

 
  

 
  

 
  

 

 
 

 
 

 
 

  
 

  
 

  
 

  
 

 
 

 
 

 
 

 
 

  
 

  
 

  
 

  
 

  
 

  
 

 
      

 

Table 2. Estimated margins of safety (EMOS) for average/maximum sea turtle exposure to perfluorooctane sulfonate based on the lowest adverse 

effect levels in lab-exposed animals. 

Adverse effect 

Neonate mortality, 
altered liver histology 
and gene expression 

Increased 
liver weight 

Altered 
thyroid 

hormones 

Altered 
development of 
motor neurons 

Decreased T-cell dependent IgM 
antibody response 

(immunosuppression) 

Decreased 
hatching 
success 

LOEAL (ng/g or 
ng/mL) 85000 1500 2290 1000 91.5 100 

LOEAL in serum serum serum serum serum eggs 
LOEAL in rat/mouse rat rat zebrafish mouse chicken 

Reference 
Bjork et al 2008; Lau 

et al 2003 
Currane et 

al 2008 
Wang et al 

2011 Zhang et al 2011 Peden-Adams et al 2008 
Molina et al 

2006 

Species Tissue 
Turtle 
Grouping Estimated margin of safety for average / maximum turtle 

Green 
turtle Plasma 

MHI Live 
captured, no FP 
stranded 74561 / 18805 1316 / 332 2009 / 507 877 / 221 80* / 20* 

Green 
turtle Plasma 

Kiholo (live 
captured) 464481 / 151786 8197 / 2679 12514 / 4089 5464 / 1786 500 / 163 

Green 
turtle Plasma 

Kapoho (live 
captured) 106784 / 38813 1884 / 685 2877 / 1046 1256 / 457 115 / 42* 

Green 
turtle Plasma 

Kailua (live 
captured) 34694 / 18805 612 / 332 935 / 507 408 / 221 37* / 20* 

Green 
turtle Plasma 

MHI FP 
stranded 104167 / 33730 1838 / 595 2806 / 909 1225 / 397 112 / 36* 

Green 
turtle Plasma CNMI 162214 / 23288 2863 / 411 4370 / 627 1908 / 274 175 / 25* 
Green 
turtle Plasma Palmyra Atoll 497076 / 320755 8772 / 5660 13392 / 8642 5848 / 3774 535/ 345 
Hawksbill 
turtle Plasma CNMI 129969 / 84158 2294 / 1485 3502 / 2267 1529 / 990 140 / 91* 
Hawksbill 
turtle Plasma Palmyra 283333 / 244253 5000 / 4310 7633 / 6580 3333 / 2874 305 / 263 
Hawksbill 
turtle 

Egg 
contents MHI 6** / 1** 



 

 
    * concern of risk when EMOS <100, ** heightened concern of risk when EMOS <10. 



 

 



 

 
 
 
 

 

      
    
     
    
   

Highlights 

• Perfluorinated alkyl substances were detected in sea turtles from the North Pacific 
• PFAS levels in sea turtles were correlated with human population and land use 
• Maternal offloading of PFASs was detected in unhatched hawksbill eggs from Hawaii 
• Levels in eggs were near those which have caused developmental toxicity in birds 
• No correlation was found between fibropapillomatosis (FP) and PFAS concentrations 
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Detailed methods of laboratory analysis and data analysis 

PFAS Measurements 

Each plasma and egg sample was measured for concentrations of 15 PFASs according to 

methods modified from (Keller et al. 2012). The calibration series consisted of NIST Reference 

Materials 8446 Perfluorinated Carboxylic Acids and Perfluorooctane Sulfonamide in Methanol 

and 8447 Perfluorinated Sulfonic Acids in Methanol. The internal standard (IS) solution 

consisted of 11 mass-labeled PFASs purchased from Wellington Laboratories (Guelph Ontario, 

Canada), RTI International (Research Triangle Park, NC, USA) and Cambridge Isotope Labs 

(Tewksbury, MA, USA) gravimetrically combined in methanol. Compound names, 

abbreviations, and IS choices are in Table S3. As part of the BEMAST protocols, three field 

blanks were prepared by pulling Millipore water stored in a polyethylene bottle through the same 

lot number of blood collection needles, tubes, pipets, and storage vials. Control materials were 

five replicates of SRM 1957 Organic Contaminants in Non-Fortified Human Serum (≈1 g each) 

and three replicates of SRM 1947 Lake Michigan Fish Tissue (≈1 g each). Plasma samples and 

field blanks (≈1 g each) archived in plastic cryovials were thawed, mixed, transferred to glass 

culture tubes gravimetrically, and 0.6 mL of IS solution was added gravimetrically to provide ≈3 

ng of each mass-labeled compound to each sample. The calibration curve consisted of six tubes 

with gravimetric dilutions from ≈0.05 ng to 275 ng of each compound. The IS solution and 1 g of 

Millipore water were added to calibrants, and to three laboratory blanks. Tubes were vortexed, 

and equilibrated at room temperature for 1.5 h or longer. Samples were extracted with 4 mL of 

acetonitrile and 30 min of sonication. The supernatant, after centrifuging the tubes at 157 rad/s 

(1500 rpm) for 5 min, was transferred to clean glass tubes. SRM 1957 replicates were processed 

the same way. 
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59
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63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

Egg samples archived in plastic cryovials were thawed (≈1 g each), transferred to glass 

tubes gravimetrically, centrifuged at 157 rad/s for 5 min, and IS solution (0.6 mL) was added 

gravimetrically to provide ≈3 ng of each mass-labeled compound to each sample. Tubes were 

vortexed for 20 s and allowed to equilibrate for 1.5 h or longer. Samples were extracted with 6 

mL of acetonitrile and 20 s of vortex and 30 min of sonication. The supernatant, after 

centrifuging the tubes at 157 rad/s for 5 min, was transferred to clean glass tubes. Samples were 

extracted a second time with 6 mL acetonitrile, and extracts were combined with the first 

extraction. After freezing, the extracts were no longer cloudy. The precipitate was discarded after 

centrifugation at 157 rad/s for 5 min and transferring the supernatant to a clean culture tube. 

SRM 1947 replicates were processed the same way. 

Extracts were solvent exchanged to methanol using nitrogen evaporation being careful to 

not evaporate to dryness. They were purified using 250 mg Envi-carb columns (Supelco, 

Bellefonte, Pennsylvania) by loading the 3 mL sample, a 1 mL sample rinse of methanol, and 6 

mL of methanol. The extracts were concentrated under nitrogen, and transferred to glass 

autosampler vials for a final volume of 0.5 mL in methanol. Samples were analyzed using a 

liquid chromatograph (Agilent 1100 HPLC, Palo Alto, CA) interfaced to a negative electrospray 

ionization tandem mass spectrometer (API 4000, Applied Biosystems-MDS Sciex, Foster City, 

CA). Samples (20 μL) were injected onto an analytical column (Agilent Zorbax Eclipse Plus 

C18, 150 mm x 2.1 mm x 5 μm). The solvent gradient at a flow rate of 0.25 mL/min (all 

mixtures expressed in volume fractions) started at 50 % methanol and 50 % 20 mmol/L 

ammonium acetate in water and increased to 75% methanol by 20 min, held for 5 min, and then 

increased to 95 % methanol by 35 min, held for 5 min, before reverting back to original 

conditions at 40.5 min with a 9.5 min hold time. The MS/MS method was divided into six 
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103

windows and two of the most abundant transitions for each PFAS were monitored. The internal 

standard approach was used to quantify each compound amount. Amounts of each analyte were 

calculated using the slope and y-intercept of at least a three point calibration curve that bracketed 

the peak area ratios observed in the samples. Concentrations were determined by dividing the 

calculated analyte mass by the extracted sample mass. Reporting limits (RLs) were determined 

using the highest calculated RL of two methods described in  O’Connell et al. (2010). 

Concentrations are totals of linear and branched isomers. 

Data Analyses 

JMP statistical software (SAS Institute Inc. Cary, NC) was used when all samples were 

>RLs, and on occasion when required, with values <RL substituted with half the RL. When 

some samples were <RLs, every attempt was made to use the R software package, NADA, as 

suggested by Helsel (2005). Means, medians and standard deviations were calculated with either 

Kaplan-Meier or regression on order statistical models. Significance was determined as p<0.05. 

Data normality and homoscedasticity were tested with Shapiro-Wilk W tests and O’Brien or 

Bartlett tests, respectively. If assumptions were violated even with transformed data, non-

parametric tests were used. The cendiff function (non-parametric ANOVA) in R NADA was 

used to test significant differences among sites for green sea turtle plasma PFAS concentrations, 

followed by the Steel Dwass non-parametric multiple comparison test using JMP. The Wilcoxon 

t-test in JMP was used to compare hawksbill plasma PFOS, PFNA, and ∑PFAS plasma 

concentrations between Palmyra Atoll and CNMI, while the cendiff function was necessary for 

PFUnA. Species differences were assessed only within CNMI data. PFOS and ∑PFAS plasma 

concentrations between species could be compared using Wilcoxon tests in JMP, and PFNA and 

PFUnA were tested with cendiff function. MHI green turtle plasma samples were grouped 
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124

125

126

according to location and FP incidence (same as in Keller et al. (2014)). Differences among 

groups in PFOS concentrations was assessed with the cendiff function in R NADA, followed by 

Steel-Dwass multiple comparison tests in JMP. 

Amount of PFASs offloaded into each nest was estimated by multiplying the total 

number eggs laid by the average grams of each pooled egg contents from that nest, and by the 

measured PFAS concentration (in ng/g). The nanograms of PFASs offloaded were then 

compared across clutches laid within one nesting season from a single mother using linear 

regressions. PFAS concentrations in the eggs were compared to nest success variables using the 

cenken function in R NADA, a version of Kendall's tau correlation. 

To assess toxicological risk, estimated margins of safety (EMOS) were calculated as 

described in Keller et al. (2012), as the ratio of the average plasma, serum, or egg PFOS 

concentration in laboratory-exposed animals in the lowest observed adverse effect level 

(LOAEL) dose group to either the average or maximum sea turtle plasma or egg PFOS 

concentration. EMOS below 100 were considered of concern (Faustman and Omenn 1996). 

Palmyra Atoll Spatial Comparison 

If local sources released PFASs at Palmyra Atoll, which are unexpected, they could be 

from runoff/sewage from the scientific field station or non-military use of AFFFs on the airstrips 

from Cooper Island in the northwestern portion of the atoll. Surface currents nearshore and 

within the lagoon flow westward (Gardner et al. 2011), so we hypothesized that turtles sampled 

from the lagoon or west would have greater PFAS concentrations. Sample sizes prevented 

statistical testing, but a cursory comparison was attempted of green turtle PFAS concentrations 

on the four sides and within the lagoon to investigate the possibility of a point source on the 

atoll. ∑PFASs in green turtles were greatest in a turtle (MT13W003) from the east (0.265 ng/g) 
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127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

and least in the turtle captured twice (MT12W064 and MT13W014, adult female) in the lagoon 

(<0.088 ng/g and 0.155 ng/g), refuting the hypothesis. No evidence of a significant PFAS point 

source on Palmyra Atoll was observed. The small difference in PFAS concentrations between the 

eastern and lagoon green turtles is likely related to life stage. The green turtle in the east was 

only 44.3 cm straight carapace length, indicating recent recruitment to Palmyra. The lagoon 

green turtle was an adult female and was captured twice over two years, suggesting residency for 

at least a year. Green turtles undergo an ontogenetic shift from a carnivorous pelagic juvenile 

phase to the herbivorous benthic juvenile phase when they recruit into nearshore habitats 

(Bjorndal 1997). Because of their higher trophic status in the pelagic phase, green turtles may 

recruit into Palmyra carrying a greater PFAS burden, which dilutes with growth through the next 

benthic herbivorous phase (Keller 2013). The lesser concentrations in the adult female in the 

lagoon may have resulted from her ability to offload PFASs to eggs. The eastern region of 

Palmyra is known habitat for the smallest, recently recruited green turtles from the pelagic-phase 

(Sterling et al. 2013) and green turtles in this region may enter with greater PFAS concentrations. 

Spatial trends across the atoll are confounded by these life history traits. The data in the current 

study suggest that remote Palmyra Atoll is a control reference site for PFAS with little to no 

local point sources. McFadden et al. (2014) was the first study to measure chemical contaminants 

(heavy metals) in Palmyra sea turtles and found elevated aluminum and iron. 
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145 
146 Figure S1. Mean and one  standard deviation of PFAS profiles in sea turtle tissues  from   Pacific  

Islands. MHI = Main Hawaiian Islands, CNMI = Commonwealth of the Northern  Marianas  

Islands.  The y-axis values were derived by first calculating the percent of ∑PFAS in  each  

individual plasma sample per compound.  Those values were averaged across individual   plasma  

samples.  Samples that had no detectable PFASs  were excluded.  For hawksbill nests, the   percent  

of ∑PFAS was calculated per nest for each compound. Percentages from multiple nests from   the  

same mothers were averaged for the same compound, because these were similar.   Then,  

percentages  were averaged across the  seven mothers for this  graph. *All green turtles from   MHI,  
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159
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154 CNMI and Palmyra were combined, excluding the MHI FP-stranded green turtles. 

Figure S2. Mean and one standard deviation of PFOS concentrations (ng/g) in plasma of four 

green turtle groups from MHI related to fibropapillomatosis (FP) and urban development 

percentage of each watershed. Mean PFOS concentrations increased with watershed 

urbanization, with the highest being in Kailua, Hawai’i, rather than with FP incidence. FP 

incidence is noted by more red colored bars. Black circles indicate % urbanization for each 

Hawaiian watershed (Parham et al. 2008a; b; c). Different letters above bars indicate a significant 

difference between groups (p<0.05). 
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164 Figure S3. Mean and one  standard deviation PFAS  concentrations (ng/g) in green and  hawksbill  

sea  turtle plasma from CNMI. Patterned bars indicate that  means fell below the   detection  

limits.Sample sizes are 12 and 4. * indicates difference between species   (p<0.05).  
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170

171

Figure S4. ∑PFAS concentrations (ng/g wet mass) in hawksbill  eggs in relation to  the  

approximate  distance (km) between the nests and the nearest international airport. When  females  

laid multiple  clutches, the average ∑PFAS concentrations of all clutches from that female   were  

used. Pearson correlation statistics are  shown.  
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174 Figure S5. PFAS  profiles in egg contents of nests from individual hawksbill  sea turtles laid  in  

different Hawaiian Island  locations.  175 

12 



 

 
 
 
 
 

  

 

6 a. 

7 

 

  
 
178 b. 

 

 
 

 
 

 
 

 

 

17

17

179 

180 

181 

182 

183 

Figure S6. Hawksbill sea  turtle 19591-04’s a) post-nesting migrations, satellite tracked in   2004  

(white dots, black line and arrows; base map modified from Figure 3C within Parker et   al.  

(2009)) and again in 2008 (yellow arrows) from Makena, Maui, to foraging grounds   near  

Kahuku, Oahu, and b) dive behavior profile for the 2008  track.  
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